Graph Fourier Transform Based on Directed Laplacian

Rahul Singh, Abhishek Chakraborty, and B. S. Manoj

INDIAN INSTITUTE OF SPACE SCIENCE AND TECHNOLOGY THIRUVANANTHAPURAM, KERALA, INDIA 695547

June 14, 2016

Abstract

Discrete Signal Processing on Graphs (DSP $_{\rm G})$ framework

	Existing	Proposed
Shift Operator	Weight matrix	Derived from the directed Laplacian
Harmonics	Eigenvectors of the weight matrix	Eigenvectors of the directed Laplacian

Achieved "natural" frequency ordering and interpretation

Outline

- Graph Signal Processing Background
- 2 Motivation
- 3 Graph Fourier transform based on directed Laplacian
 - Directed Laplacian
 - Shift Operator
 - Total Variation
 - Graph Fourier Transform
- 4 Comparison

5 Conclusions

Background: Graph Signal Processing

Graph Fourier Transform Based on Directed Laplacian

SPCOM 2016, IISC BANGALORE

Graph Signal Processing Applications

Graph Fourier Transform Based on Directed Laplacian SPCOM 2016, IISC BANGALORE June 14, 2016 5/23

Notation

Graph Fourier Transform Based on Directed Laplacian

Background

Existing Graph Signal Processing (GSP) Frameworks

	$GSP \text{ based on } Laplacian^1$	Discrete Signal Processing on Graphs (DSP $_{\rm G})$ Framework 2	
Shift Operator	Not defined	The weight matrix	
LSI Filters	Not applicable	Applicable	
Applicability	Only undirected graphs	Directed graphs	
Frequencies	Eigenvalues of the Laplacian ma- trix	Eigenvalues of the weight matrix	
Harmonics	Eigenvectors of the Laplacian matrix	Eigenvectors of the weight ma- trix	
Frequency Ordering	Laplacian quadratic form	Total variation	
Multiscale Analysis	Exists (SGWT)	Does not exist	

Graph Fourier Transform Based on Directed Laplacian

¹David K Hammond, Pierre Vandergheynst, and Rémi Gribonval. "Wavelets on graphs via spectral graph theory". In: *Applied and Computational Harmonic Analysis* 30.2 (2011), pp. 129–150.

²A. Sandryhaila and J.M.F. Moura. "Discrete Signal Processing on Graphs: Frequency Analysis". In: Signal Processing, IEEE Transactions on 62.12 (June 2014), pp. 3042–3054.

Background

Discrete Signal Processing on Graphs (DSP_G) Framework

Graph Fourier Transform Based on Directed Laplacian SPCOM 2016, IISC BANGALORE June 14, 2016 8/23

I

$\mathsf{DSP}_{\mathrm{G}}$ Framework (Cont'd...)

- Shift operator
 - Weight matrix W of the graph
- Shifted graph signal **f** = Wf
- Example: shifting discrete-time signal (one unit right)

$$\mathbf{x} = [9, \ 7, \ 5, \ 0, \ 6]^{\mathcal{T}}$$

$$\tilde{\mathbf{x}} = \mathbf{W}\mathbf{x} = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 9 \\ 7 \\ 5 \\ 0 \\ 6 \end{bmatrix} = \begin{bmatrix} 6 \\ 9 \\ 7 \\ 5 \\ 0 \end{bmatrix}$$

- Linear Shift Invariant (LSI) filters
 - $\blacksquare \mathbf{H}(\mathbf{W}\mathbf{f}_{in}) = \mathbf{W}(\mathbf{H}\mathbf{f}_{in})$
 - Polynomials in W

$$\mathbf{H} = h(\mathbf{W}) = \sum_{m=0}^{M-1} h_m \mathbf{W}^m$$
$$= h_0 \mathbf{I} + h_1 \mathbf{W} + \ldots + h_{M-1} \mathbf{W}^{M-1}$$

Graph Fourier Transform Based on Directed Laplacian

Background

$\mathsf{DSP}_{\mathrm{G}}$ Framework (Cont'd...)

- Analogy from classical signal processing
 - Classical Fourier basis: Complex exponentials
 - Complex exponentials are **Eigenfunctions** of Linear Time Invariant (LTI) filters
- Graph Fourier Transform
 - Graph Fourier basis are **Eigenfunctions** of Linear Shift Invariant (LSI) graph filters
 - Graph Frequencies: Eigenvalues of the weight matrix W
 - Graph Harmonics: Eigenvectors of the weight matrix W

$$\mathbf{W} = \mathbf{V} \mathbf{\Sigma} \mathbf{V}^{-1}$$

• GFT
$$\hat{\mathbf{f}} = \mathbf{V}^{-1}\mathbf{f}$$
, IGFT $\mathbf{f} = \mathbf{V}^{-1}\hat{\mathbf{f}}$

Background

$\mathsf{DSP}_{\mathrm{G}}$ Framework (Cont'd...)

Total Variation in classical signal processing

$$|\operatorname{TV}(\mathbf{x}) = \sum_{n} |x[n] - x[n-1]| = ||\mathbf{x} - \tilde{\mathbf{x}}||_1 |, \text{ where } \tilde{x}[n] = x[n-1]$$

Analogy from classical signal processing

Total Variation on graphs $TV_{\mathcal{G}}(\mathbf{f}) = ||\mathbf{f} - \mathbf{\tilde{f}}||_1 = ||\mathbf{f} - \mathbf{Wf}||_1$

- Frequency ordering: Based on Total Variation
- Eigenvalue with largest magnitude: Lowest frquency

 $-|\sigma_{max}|$

Re

 $\sigma_0 \int |\sigma_{max}|$

Im

 σ_{N-1}

 σ_2

MOTIVATION

MOTIVATION

Problems in Weight Matrix based $\mathsf{DSP}_{\mathrm{G}}$

Constant graph signal: High frequency components

Graph frequencies: -1.62, -1.47, -0.46, 0.62, 2.94

- Weight matrix based DSP_G
 - Does not provide "natural" frequency ordering
 - Even a constant signal has high frequency components

Our Work

GRAPH FOURIER TRANSFORM BASED ON DIRECTED LAPLACIAN

Graph Fourier Transform based on Directed Laplacian

- \blacksquare Redefined Graph Fourier Transform under $\mathsf{DSP}_{\mathrm{G}}$
 - Shift operator: Derived from directed Laplacian
 - Linear Shift Invariant filters: Polynomials in the directed Laplacian
 - Graph frequencies: Eigenvalues of the directed Laplacian
 - Graph harmonics: Eigenvectors of the directed Laplacian
- "Natural" frequency ordering
- Better intuition of frequency as compared to the weight matrix based approach
- Coincides with the Laplacian based approach for undirected graphs

Directed Laplacian Matrix

- Basic matrices of a directed graph
 - Weight matrix: W

w_{ii} is the weight of the directed edge from node j to node i

In-degree matrix:
$$\mathbf{D}_{in} = \text{diag}(\{d_i^{in}\}_{i=1,2,\dots,N}), \quad d_i^{in} = \sum_{j=1}^N w_{ij}$$

Out-degree matrix: $\mathbf{D}_{out} = diag(\{d_i^{out}\}_{i=1,2,\dots,N}), \quad d_i^{out} = \sum_{i=1}^N w_{ij}$

Directed Laplacian matrix $\mathbf{L} = \mathbf{D}_{in} - \mathbf{W}$

- Sum of each row is zero
 - $\lambda = 0$ is surely an eigenvalue

$$\mathbf{W} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \quad \mathbf{D}_{\text{in}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{L} = \begin{bmatrix} 1 & 0 & 0 & -1 \\ -1 & 3 & -1 & -1 \\ -1 & -1 & 2 & 0 \\ -1 & 0 & 0 & 1 \end{bmatrix}$$

Weight matrix In-degree matrix Directed Laplacian matrix

A directed graph

Shift Operator

S = (I - L) is the shift operator

Shifted graph signal:
$$\mathbf{\tilde{f}} = S\mathbf{f} = (I - \mathbf{L})\mathbf{f}$$

Graph Fourier Transform Based on Directed Laplacian

SPCOM 2016, IISC BANGALORE

GRAPH FOURIER TRANSFORM BASED ON DIRECTED LAPLACIAN LSI Filters

- 1 Geometric multiplicity of each distinct eigenvalue of the graph Laplacian is one.
- The graph filter **H** is a polynomial in **L**, i.e., if **H** can be written as 2

$$\mathbf{H} = h(\mathbf{L}) = h_0 \mathbf{I} + h_1 \mathbf{L} + \ldots + h_m \mathbf{L}^m$$

where, $h_0, h_1, \ldots, h_m \in \mathbb{C}$ are called filter taps.

Graph Fourier Transform based on Directed Laplacian

- Jordan decomposition of the directed Laplacian: L = VJV⁻¹
- Graph Fourier basis: Columns of V (Jordan Eigenvectors of L)
- Graph frequencies: Eigenvalues of L (diagonal entries of Jordan blocks in J)
- GFT $\hat{\mathbf{f}} = \mathbf{V}^{-1}\mathbf{f}$ and IGFT: $\mathbf{f} = \mathbf{V}\hat{\mathbf{f}}$

Frequency Ordering: based on Total Variation

Total Variation:
$$TV_{\mathcal{G}}(\mathbf{f}) = ||\mathbf{f} - \mathbf{S}\mathbf{f}||_1 = ||\mathbf{f} - (\mathbf{I} - \mathbf{L})\mathbf{f}||_1$$

 $TV_{\mathcal{G}}(\mathbf{f}) = ||\mathbf{L}\mathbf{f}||_1$

Theorem

 TV of an eigenvector \mathbf{v}_r is proportional to the absolute value of the corresponding eigenvalue

$$\mathrm{TV}(\mathbf{v}_r) \propto |\lambda_r|$$

Graph Fourier Transform Based on Directed Laplacian

Frequency Ordering

Frequency Ordering

Graph with positive edge weights

Undirected graph with real and non-negative edge weights.

Graph signal $\mathbf{f} = [0.1189 \ 0.3801 \ 0.8128 \ 0.2441 \ 0.8844]^{T}$ defined on the directed graph

Spectrum of the signal $\mathbf{f} = [0.1189 \ 0.3801 \ 0.8128 \ 0.2441 \ 0.8844]^T$

Graph signal $\mathbf{f} = [0.1189 \ 0.3801 \ 0.8128 \ 0.2441 \ 0.8844]^T$ defined on the directed graph

Spectrum of the signal $\mathbf{f} = [0.1189 \ 0.3801 \ 0.8128 \ 0.2441 \ 0.8844]^T$

Example: Zero Frequency

- Eigenvector corresponding to λ_0 is $\mathbf{v}_0 = \frac{1}{\sqrt{N}} \begin{bmatrix} 1, & 1, \dots & 1 \end{bmatrix}^T$
 - TV of \mathbf{v}_0 is zero
- For a constant graph signal $\mathbf{f} = [k, k, ...]^T$, GFT is $\mathbf{\hat{f}} = [(k\sqrt{N}), 0, ...]^T$
 - Only zero frequency component

Spectrum of the constant signal $\mathbf{f} = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^T$

Example: Zero Frequency

- Eigenvector corresponding to λ_0 is $\mathbf{v}_0 = \frac{1}{\sqrt{N}} [1, 1, \dots, 1]^T$
 - TV of **v**₀ is zero
- For a constant graph signal $\mathbf{f} = [k, k, ...]^T$, GFT is $\mathbf{\hat{f}} = [(k\sqrt{N}), 0, ...]^T$
 - Only zero frequency component
- The weight matrix based approach of GFT fails to give this basic intuition

Spectrum of the constant signal $\mathbf{f} = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^T$

Comparison

Comparison of the GSP Frameworks

	GSP based on Laplacian	DSP_{G} Framework		
		Based on Weight Matrix	Based on Directed Laplacian	
Shift Operator	Not defined	The weight matrix ${f W}$	Derived from directed Laplacian $(I - L)$	
LSI Filters	Not applicable	Applicable	Applicable	
Applicability	Only undirected graphs	Directed graphs	Directed graphs	
Frequencies	Eigenvalues of the Laplacian (real)	Eigenvalues of the weight matrix	Eigenvalues of the di- rected Laplacian	
Harmonics	Eigenvectors of the Laplacian matrix (real)	Eigenvectors of the weight matrix	Eigenvectors of the directed Laplacian	
Frequency Ordering	Laplacian quadratic form (natural)	Total variation (not natural)	Total variation (natural)	
Multiscale Analysis	Exists (Spectral Graph Wavelet Transform)	Does not exist	Possible	

Graph Fourier Transform Based on Directed Laplacian

SPCOM 2016, IISC BANGALORE

June 14, 2016 21/23

Conclusions

- Redefined Graph Fourier Transform under the DSP_G framework
- Shift operator derived from directed Laplacian
- Eigendecomposition of directed Laplacian for frequency analysis
- "Natural" frequency ordering and interpretation
- Unification of existing approaches
- Spectral graph wavelet transform can be extended to directed graphs using directed Laplacian

References

- [1] Fan RK Chung. Spectral graph theory. Vol. 92. American Mathematical Soc., 1997.
- [2] David K Hammond, Pierre Vandergheynst, and Rémi Gribonval. "Wavelets on graphs via spectral graph theory". In: Applied and Computational Harmonic Analysis 30.2 (2011), pp. 129–150.
- [3] Sunil K Narang and Antonio Ortega. "Perfect reconstruction two-channel wavelet filter banks for graph structured data". In: Signal Processing, IEEE Transactions on 60.6 (2012), pp. 2786–2799.
- [4] A. Sandryhaila and J.M.F. Moura. "Big Data Analysis with Signal Processing on Graphs: Representation and processing of massive data sets with irregular structure". In: Signal Processing Magazine, IEEE 31.5 (Sept. 2014), pp. 80–90.
- [5] A. Sandryhaila and J.M.F. Moura. "Discrete Signal Processing on Graphs". In: Signal Processing, IEEE Transactions on 61.7 (Apr. 2013), pp. 1644–1656.
- [6] A. Sandryhaila and J.M.F. Moura. "Discrete Signal Processing on Graphs: Frequency Analysis". In: Signal Processing, IEEE Transactions on 62.12 (June 2014), pp. 3042–3054.
- [7] Aliaksei Sandryhaila and José MF Moura. "Discrete signal processing on graphs: Graph fourier transform." In: ICASSP. 2013, pp. 6167–6170.
- [8] David I Shuman, Benjamin Ricaud, and Pierre Vandergheynst. "Vertex-frequency analysis on graphs". In: Applied and Computational Harmonic Analysis 40.2 (2016), pp. 260–291.
- David I Shuman et al. "The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains". In: Signal Processing Magazine, IEEE 30.3 (2013), pp. 83–98.

rahul.s.in@ieee.org